ACMSM065
prove results for sums, such as \(1+4+9\dots+n^2=\frac{n(n+1)(2n+1)}6\) for any positive integer n
ACMSM065 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMEM102
recognise relations between volume and capacity, recognising that \(1\mathrm c\mathrm m^3=1\mathrm m\mathrm L\) and \(1\mathrm m^3=1\mathrm k\mathrm L\)
ACMEM102 | Content Descriptions | Unit 3 | Essential Mathematics | Mathematics | Senior secondary curriculum
ACMMM116
establish and use the formula \(\int x^ndx=\frac1{n+1}x^{n+1}+c\) for \(n\neq-1\)
ACMMM116 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMGM028
classify a numerical variable as discrete, such as the number of rooms in a house, or continuous, such as the temperature in degrees Celsius
ACMGM028 | Content Descriptions | Unit 2 | General Mathematics | Mathematics | Senior secondary curriculum
ACSCH135
Green chemistry principles include the design of chemical synthesis processes that use renewable raw materials, limit the use of potentially harmful solvents and minimise the amount of unwanted products
ACSCH135 | Content Descriptions | Unit 4 | Chemistry | Science | Senior secondary curriculum
ACMMM099
recognise that \(e\) is the unique number \(a\) for which the above limit is 1
ACMMM099 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM067
define the imaginary number i as a root of the equation \(x^2=-1\)
ACMSM067 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACHAH356
The reign of Nero and the role of key events, including Rome’s relationship with Parthia, the Great Fire, the Pisonian Conspiracy, the rebellion of Vindex and Galba, Nero’s Golden House, and the role of influential individuals, for example Agrippina the …
ACHAH356 | Content Descriptions | Unit 4: Reconstructing the Ancient World | Ancient History | Humanities and Social Sciences | Senior secondary curriculum
ACMMM068
recognise and use the recursive definition of an arithmetic sequence: \(t_{n+1}=t_n+d\)
ACMMM068 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM072
recognise and use the recursive definition of a geometric sequence:\(t_{n+1}=rt_n\)
ACMMM072 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM101
review the concepts of vectors from Unit 1 and extend to three dimensions including introducing the unit vectors i, j and k.
ACMSM101 | Content Descriptions | Unit 3 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACSCH028
Nanomaterials are substances that contain particles in the size range 1–100 nm and have specific properties relating to the size of these particles
ACSCH028 | Content Descriptions | Unit 1 | Chemistry | Science | Senior secondary curriculum
ACMMM178
use the approximate confidence interval \(\left(\widehat p-z\sqrt[{}]{(\widehat p(1-\widehat p)/n},\;\;\widehat p+z\sqrt[{}]{(\widehat p(1-\widehat p)/n}\right),\) as an interval estimate for \(p\), where \(z\) is the appropriate quantile for the standard …
ACMMM178 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM053
review the probability scale: \(0\leq P(A)\leq1\) for each event \(A,\) with \(P\left(A\right)=0\) if \(A\) is an impossibility and \(P\left(A\right)=1\) if \(A\) is a certaint
ACMMM053 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM116
integrate using the trigonometric identities \(\mathrm s\mathrm i\mathrm n^2x=\frac12(1-\mathrm c\mathrm o\mathrm s\;2x)\), \(\mathrm c\mathrm o\mathrm s^2x=\frac12(1+\mathrm c\mathrm o\mathrm s\;2x)\) and \(1+\;\mathrm t\mathrm a\mathrm n^2x=\mathrm …
ACMSM116 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMMM014
recognise features of the graphs of \(y=x^n\) for \(n\in\boldsymbol N,\) \(n=-1\) and \(n=½\), including shape, and behaviour as \(x\rightarrow\infty\) and \(x\rightarrow-\infty\)
ACMMM014 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM156
recognise the qualitative features of the graph of \(y=\log_ax\) \((a>1)\) including asymptotes, and of its translations \(y=\log_ax+b\) and \(y=\log_a{(x+c)}\)
ACMMM156 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM179
define the approximate margin of error \(E=z\sqrt[{}]{(\widehat p(1-\widehat p)/n}\) and understand the trade-off between margin of error and level of confidence
ACMMM179 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM176
simulate repeated random sampling, for a variety of values of \(p\) and a range of sample sizes, to illustrate the distribution of \(\widehat p\) and the approximate standard normality of \(\frac{\widehat p\;-p}{\sqrt[{}]{(\widehat p(1-\widehat p)/n}}\) …
ACMMM176 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM055
define and use basic linear transformations: dilations of the form \((\mathrm x,\mathrm y)\longrightarrow({\mathrm\lambda}_1\mathrm x,{\mathrm\lambda}_2\mathrm y)\) , rotations about the origin and reflection in a line which passes through the origin, …
ACMSM055 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum