ACMGM031
construct and use parallel box plots (including the use of the ‘Q1 – 1.5 x IQR’ and ‘Q3 + 1.5 x IQR’ criteria for identifying possible outliers) to compare groups in terms of location (median), spread (IQR and range) and outliers and to interpret and …
ACMGM031 | Content Descriptions | Unit 2 | General Mathematics | Mathematics | Senior secondary curriculum
ACMEM059
construct box plots using a five number summary
ACMEM059 | Content Descriptions | Unit 2 | Essential Mathematics | Mathematics | Senior secondary curriculum
ACMMM017
recognise features of the graphs of \(y=x^3\), \(y=a{(x-b)}^3+c\) and \(y=k(x-a)(x-b)(x-c)\), including shape, intercepts and behaviour as \(x\rightarrow\infty\) and \(x\rightarrow-\infty\)
ACMMM017 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM106
apply the product, quotient and chain rule to differentiate functions such as \(xe^x\), \(\tan x,\), \(\frac1{x^n}\), \(x\sin x,\text{ }e^{-x}\sin x\) and \(f(ax+b)\)
ACMMM106 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM037
examine amplitude changes and the graphs of \(y=a\sin x\) and \(y=a\cos x\)
ACMMM037 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM036
recognise the graphs of \(y=\sin x,\;y=\cos x,\) and \(y=\tan x\) on extended domains
ACMMM036 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM098
use and apply the notation \(\left|x\right|\) for the absolute value for the real number \(x\) and the graph of \(y=\left|x\right|\)
ACMSM098 | Content Descriptions | Unit 3 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMMM039
examine phase changes and the graphs of \(y=\sin{(x+c)}\), \(y=\cos{(x+c)}\) and \(y=\tan{(x+c)}\) and the relationships \(\sin\left(x+\frac\pi2\right)=\cos x\) and \(\cos\left(x-\frac\pi2\right)=\sin x\)
ACMMM039 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM065
recognise the qualitative features of the graph of \(y=a^x(a>0)\) including asymptotes, and of its translations \(y=a^x+b\) and \(y=a^{x+c}\)
ACMMM065 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM082
define the derivative \(f'\left(x\right)\) as \(\lim_{h\rightarrow0}\frac{f\left(x+h\right)-f(x)}h\)
ACMMM082 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM117
use substitution \(u = g(x)\) to integrate expressions of the form \(f\left(g\left(x\right)\right)g'\left(x\right)\)
ACMSM117 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMMM007
recognise features of the graphs of \(y=x^2\), \(y=a{(x-b)}^2+c\), and \(y=a\left(x-b\right)\left(x-c\right)\) including their parabolic nature, turning points, axes of symmetry and intercepts
ACMMM007 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM079
use the notation \(\frac{\delta y}{\delta x}\) for the difference quotient \(\frac{f\left(x+h\right)-f(x)}h\) where \(y=f(x)\)
ACMMM079 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM080
interpret the ratios \(\frac{f\left(x+h\right)-f(x)}h\) and \(\frac{\delta y}{\delta x}\) as the slope or gradient of a chord or secant of the graph of \(y=f(x)\)
ACMMM080 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM088
establish the formula \(\frac d{dx}\left(x^n\right)=nx^{n-1}\) for positive integers \(n\) by expanding \({(x+h)}^n\) or by factorising \({(x+h)}^n-x^n\)
ACMMM088 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM159
define the natural logarithm \(\ln x=\log_ex\)
ACMMM159 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM099
examine the relationship between the graph of \(y=f(x)\) and the graphs of \(y=\frac1{f(x)}\), \(y=\vert f\left(x\right)\vert\) and \(y=f(\left|x\right|)\)
ACMSM099 | Content Descriptions | Unit 3 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMMM025
examine translations and the graphs of \(y=f\left(x\right)+a\) and \(y=f(x+b)\)
ACMMM025 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM078
use the Leibniz notation \(\delta x\) and \(\delta y\) for changes or increments in the variables \(x\) and \(y\)
ACMMM078 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM100
establish and use the formula \(\frac d{dx}\left(e^x\right)=e^x\)
ACMMM100 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum