Outdoor learning
Outdoor learning | Portfolios | Curriculum connections | Resources
ACMMM014
recognise features of the graphs of \(y=x^n\) for \(n\in\boldsymbol N,\) \(n=-1\) and \(n=½\), including shape, and behaviour as \(x\rightarrow\infty\) and \(x\rightarrow-\infty\)
ACMMM014 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM083
use the Leibniz notation for the derivative: \(\frac{dy}{dx}=\lim_{\mathit{δx}\rightarrow0}\frac{\delta y}{\delta x}\) and the correspondence \(\frac{dy}{dx}=f'\left(x\right)\) where \(y=f(x)\)
ACMMM083 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM124
examine the area problem, and use sums of the form \(\sum\nolimits_if\left(x_i\right)\;\delta x_i\) as area under the curve \(y=f(x)\)
ACMMM124 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM125
interpret the definite integral \(\int_a^bf\left(x\right)dx\;\) as area under the curve \(y=f\left(x\right)\) if \(f\left(x\right)>0\;\)
ACMMM125 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM126
recognise the definite integral \(\int_a^bf\left(x\right)dx\;\;\) as a limit of sums of the form \(\sum\nolimits_if\left(x_i\right)\;\delta x_i\)
ACMMM126 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMEM122
generate tables of values for linear functions, including for negative values of \(x\)
ACMEM122 | Content Descriptions | Unit 3 | Essential Mathematics | Mathematics | Senior secondary curriculum
ACMEM123
graph linear functions for all values of \(x\) with pencil and paper and with graphing software.
ACMEM123 | Content Descriptions | Unit 3 | Essential Mathematics | Mathematics | Senior secondary curriculum
ACMMM046
expand \(\left(x+y\right)^n\) for small positive integers \(n\)
ACMMM046 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM085
interpret the derivative as the slope or gradient of a tangent line of the graph of \(y=f(x)\)
ACMMM085 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM102
establish the formulas \(\frac d{dx}\left(\sin x\right)=\cos x,\;\text{ and }\frac d{dx}\left(\cos x\right)=-\sin x\) by numerical estimations of the limits and informal proofs based on geometric constructions
ACMMM102 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM117
establish and use the formula \(\int e^xdx=e^x+c\)
ACMMM117 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM127
interpret \(\int_a^bf\left(x\right)dx\;\) as a sum of signed areas
ACMMM127 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM162
establish and use the formula \(\int\frac1xdx=\ln\;x\;+c\) for \(x>0\)
ACMMM162 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM067
define the imaginary number i as a root of the equation \(x^2=-1\)
ACMSM067 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMMM077
interpret the difference quotient \(\frac{f\left(x+h\right)-f(x)}h\) as the average rate of change of a function \(f\)
ACMMM077 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM081
examine the behaviour of the difference quotient \(\frac{f\left(x+h\right)-f(x)}h\) as \(h\rightarrow0\) as an informal introduction to the concept of a limit
ACMMM081 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM095
sketch curves associated with simple polynomials; find stationary points, and local and global maxima and minima; and examine behaviour as \(x\rightarrow\infty\) and \(x\rightarrow-\infty\)
ACMMM095 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM048
convert sums \(\mathrm a\cos\mathrm x+\mathrm b\;\sin\mathrm x\) to \(\mathrm R\;\cos{(\mathrm x\pm\mathrm\alpha)}\) or \(\mathrm R\sin{(\mathrm x\pm\mathrm\alpha)}\) and apply these to sketch graphs, solve equations of the form \(\mathrm a\cos\mathrm …
ACMSM048 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
Achievement Standard Indonesian Years 7 and 8
By the end of Year 8, students use Indonesian to interact and exchange ideas, experiences and interests with teachers, peers and others. They pronounce familiar polysyllabic words such as mendengarkan, pekerjaan and mengerjakan, stressing the penultimate …
Achievement Standard | Achievement Standards | Years 7 and 8 | Years F–10 Sequence | Indonesian | Languages | F-10 curriculum