Unit 3 Specialist Mathematics
Unit 3 of Specialist Mathematics contains three topics: ‘Vectors in three dimensions’, ‘Complex numbers’ and ‘Functions and sketching graphs’. The study of vectors was introduced in Unit 1 with a focus on vectors in two-dimensional space. In this unit, …
Unit 3 | Specialist Mathematics | Mathematics | Senior secondary curriculum
Units 3 and 4 Specialist Mathematics Achievement Standard
demonstrates knowledge and understanding of concepts of functions, calculus, vectors and statistics in routine and non-routine problems in a variety of contexts synthesises information to select and apply techniques in mathematics to solve routine and …
Units 3 and 4 | Achievement standards | Specialist Mathematics | Mathematics | Senior secondary curriculum
Unit 2 Specialist Mathematics
Unit 2 of Specialist Mathematics contains three topics – ‘Trigonometry’, ‘Real and complex numbers’ and ‘Matrices’… ‘Trigonometry’ contains techniques that are used in other topics in both this unit and Unit 3. ‘Real and complex numbers’ provides a continuation …
Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
Unit 1 Specialist Mathematics
Unit 1 of Specialist Mathematics contains three topics – ‘Combinatorics’, ‘Vectors in the plane’ and ‘Geometry’ – that complement the content of Mathematical Methods. The proficiency strand, Reasoning, of the F–10 curriculum is continued explicitly in …
Unit 1 | Specialist Mathematics | Mathematics | Senior secondary curriculum
Structure of Specialist Mathematics Specialist Mathematics
Specialist Mathematics is structured over four units. The topics in Unit 1 broaden students’ mathematical experience and provide different scenarios for incorporating mathematical arguments and problem solving. The unit provides a blending of algebraic …
Structure of Specialist Mathematics | Specialist Mathematics | Mathematics | Senior secondary curriculum
Rationale Specialist Mathematics
Rationale Mathematics is the study of order, relation and pattern. From its origins in counting and measuring it has evolved in highly sophisticated and elegant ways to become the language now used to describe much of the modern world. Statistics is concerned …
Rationale | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM066
prove divisibility results, such as \(3^{2n+4}-2^{2n}\) is divisible by 5 for any positive integer n.
ACMSM066 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM049
prove and apply other trigonometric identities such as \(\cos3\mathrm x=4\;\mathrm c\mathrm o\mathrm s^{3\;}\mathrm x-3\cos\mathrm x\)
ACMSM049 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM086
identify subsets of the complex plane determined by relations such as \(\left|z-3i\right|\leq4\) \(\frac\pi4\leq Arg(z)\leq\frac{3\pi}4\), \(Re\left(z\right)>Im(z)\) and \(\left|z-1\right|=2\vert z-i\vert\)
ACMSM086 | Content Descriptions | Unit 3 | Specialist Mathematics | Mathematics | Senior secondary curriculum