ACMSM143
use \(\overline x\) and \(s\) to estimate \(\mu\) and \(\sigma\), to obtain approximate intervals covering desired proportions of values of a normal random variable and compare with an approximate confidence interval for \(\mu\)
ACMSM143 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM138
simulate repeated random sampling, from a variety of distributions and a range of sample sizes, to illustrate properties of the distribution of \(\overline X\;\) across samples of a fixed size \(n\), including its mean \(\mu\), its standard deviation …
ACMSM138 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM139
simulate repeated random sampling, from a variety of distributions and a range of sample sizes, to illustrate the approximate standard normality of \(\frac{\overline X-\mu}{s/\sqrt[{}]n}\) for large samples \(\left(n\geq30\right)\), where \(s\) is the …
ACMSM139 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMMM149
determine and use the probabilities \(\mathrm P\left(\mathrm X=\mathrm r\right)=\begin{pmatrix}\mathrm n\\\mathrm r\end{pmatrix}\mathrm p^\mathrm r{(1-\mathrm p)}^{\mathrm n-\mathrm r}\) associated with the binomial distribution with parameters \(n\) …
ACMMM149 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum