Representation of General capabilities Specialist Mathematics
The seven general capabilities of Literacy, Numeracy, Information and Communication technology (ICT) capability, Critical and creative thinking, Personal and social capability, Ethical understanding, and Intercultural understanding are identified where …
Representation of General capabilities | Specialist Mathematics | Mathematics | Senior secondary curriculum
Structure of Essential Mathematics Essential Mathematics
Essential Mathematics has four units each of which contains a number of topics. It is intended that the topics be taught in a context relevant to students’ needs and interests. In Essential Mathematics, students use their knowledge and skills to investigate …
Structure of Essential Mathematics | Essential Mathematics | Mathematics | Senior secondary curriculum
Structure of General Mathematics General Mathematics
General Mathematics is organised into four units. The topics in each unit broaden students’ mathematical experience and provide different scenarios for incorporating mathematical arguments and problem solving. The units provide a blending of algebraic, …
Structure of General Mathematics | General Mathematics | Mathematics | Senior secondary curriculum
Structure of Mathematical Methods Mathematical Methods
Mathematical Methods is organised into four units. The topics broaden students’ mathematical experience and provide different scenarios for incorporating mathematical arguments and problem solving. The units provide a blending of algebraic and geometric …
Structure of Mathematical Methods | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM020
recognise features of the graphs of \(x^2+y^2=r^2\) and \(\left(x-a\right)^2+\left(y-b\right)^2=r^2\), including their circular shapes, their centres and their radii
ACMMM020 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM121
integrate expressions of the form \(\frac{\pm1}{\sqrt[{}]{a^2-x^2}}\) and \(\frac a{a^2+x^2}\)
ACMSM121 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMEM040
determine which type of graph is best used to display a dataset
ACMEM040 | Content Descriptions | Unit 1 | Essential Mathematics | Mathematics | Senior secondary curriculum
ACMSM063
prove irrationality by contradiction for numbers such as \(\sqrt[{}]2\) and \(\log_25\)
ACMSM063 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMMM011
recognise features of the graph of the general quadratic \(y=ax^2+bx+c\)
ACMMM011 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM067
define the imaginary number i as a root of the equation \(x^2=-1\)
ACMSM067 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMEM002
apply arithmetic operations according to their correct order
ACMEM002 | Content Descriptions | Unit 1 | Essential Mathematics | Mathematics | Senior secondary curriculum
ACMMM007
recognise features of the graphs of \(y=x^2\), \(y=a{(x-b)}^2+c\), and \(y=a\left(x-b\right)\left(x-c\right)\) including their parabolic nature, turning points, axes of symmetry and intercepts
ACMMM007 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM131
examine slope (direction or gradient) fields of a first order differential equation
ACMSM131 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMGM082
apply Euler’s formula, \(v+f-e=2\), to solve problems relating to planar graphs.
ACMGM082 | Content Descriptions | Unit 3 | General Mathematics | Mathematics | Senior secondary curriculum
ACMMM021
recognise features of the graph of \(y^2=x\) including its parabolic shape and its axis of symmetry.
ACMMM021 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM066
prove divisibility results, such as \(3^{2n+4}-2^{2n}\) is divisible by 5 for any positive integer n.
ACMSM066 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM065
prove results for sums, such as \(1+4+9\dots+n^2=\frac{n(n+1)(2n+1)}6\) for any positive integer n
ACMSM065 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMGM075
use a general first-order linear recurrence relation to generate the terms of a sequence and to display it in both tabular and graphical form
ACMGM075 | Content Descriptions | Unit 3 | General Mathematics | Mathematics | Senior secondary curriculum
ACMSM036
When a secant (meeting the circle at \(A\) and \(B\)) and a tangent (meeting the circle at \(T\)) are drawn to a circle from an external point \(M\), the square of the length of the tangent equals the product of the lengths to the circle on the secant. …
ACMSM036 | Content Descriptions | Unit 1 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMGM076
recognise that a sequence generated by a first-order linear recurrence relation can have a long term increasing, decreasing or steady-state solution
ACMGM076 | Content Descriptions | Unit 3 | General Mathematics | Mathematics | Senior secondary curriculum