Your search for "WA 0812 2782 5310 Biaya Rincian Mengecat Rumah Ukuran Tanah 10 X 15 Bambanglipuro Bantul" returned 84 result(s)
Sort by Relevance | Title | Type |

ACMMM082

define the derivative \(f'\left(x\right)\) as \(\lim_{h\rightarrow0}\frac{f\left(x+h\right)-f(x)}h\)

ACMMM082 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMSM117

use substitution \(u = g(x)\) to integrate expressions of the form \(f\left(g\left(x\right)\right)g'\left(x\right)\)

ACMSM117 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum

ACMMM007

recognise features of the graphs of \(y=x^2\), \(y=a{(x-b)}^2+c\), and \(y=a\left(x-b\right)\left(x-c\right)\) including their parabolic nature, turning points, axes of symmetry and intercepts

ACMMM007 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM079

use the notation \(\frac{\delta y}{\delta x}\) for the difference quotient \(\frac{f\left(x+h\right)-f(x)}h\) where \(y=f(x)\)

ACMMM079 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM080

interpret the ratios \(\frac{f\left(x+h\right)-f(x)}h\) and \(\frac{\delta y}{\delta x}\) as the slope or gradient of a chord or secant of the graph of \(y=f(x)\)

ACMMM080 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM088

establish the formula \(\frac d{dx}\left(x^n\right)=nx^{n-1}\) for positive integers \(n\) by expanding \({(x+h)}^n\) or by factorising \({(x+h)}^n-x^n\)

ACMMM088 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM159

define the natural logarithm \(\ln x=\log_ex\)

ACMMM159 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMSM099

examine the relationship between the graph of \(y=f(x)\) and the graphs of \(y=\frac1{f(x)}\), \(y=\vert f\left(x\right)\vert\) and \(y=f(\left|x\right|)\)

ACMSM099 | Content Descriptions | Unit 3 | Specialist Mathematics | Mathematics | Senior secondary curriculum

ACMMM025

examine translations and the graphs of \(y=f\left(x\right)+a\) and \(y=f(x+b)\)

ACMMM025 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM078

use the Leibniz notation \(\delta x\) and \(\delta y\) for changes or increments in the variables \(x\) and \(y\)

ACMMM078 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM100

establish and use the formula \(\frac d{dx}\left(e^x\right)=e^x\)

ACMMM100 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM116

establish and use the formula \(\int x^ndx=\frac1{n+1}x^{n+1}+c\) for \(n\neq-1\)

ACMMM116 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM118

establish and use the formulas, \(\int\sin xdx=-\cos x+c\) and \(\int\cos xdx=\sin x+c\)

ACMMM118 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM122

determine \(f\left(x\right),\) given \(f^{'\;}(x)\;\) and an initial condition \(f\left(a\right)=b\)

ACMMM122 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM151

define logarithms as indices: \(a^x=b\) is equivalent to \(x=\log_ab\) i.e. \(a^{\log_ab}=b\)

ACMMM151 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM153

recognise the inverse relationship between logarithms and exponentials: \(y=a^x\) is equivalent to \(x=\log_ay\)

ACMMM153 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM160

recognise and use the inverse relationship of the functions \(y=e^x\) and \(y=\ln x\)

ACMMM160 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMSM118

establish and use the formula \(\int\frac1xdx=\ln{\;\vert x\;\vert}+c\) for x ≠ 0

ACMSM118 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum

ACMMM014

recognise features of the graphs of \(y=x^n\) for \(n\in\boldsymbol N,\) \(n=-1\) and \(n=½\), including shape, and behaviour as \(x\rightarrow\infty\) and \(x\rightarrow-\infty\)

ACMMM014 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM083

use the Leibniz notation for the derivative: \(\frac{dy}{dx}=\lim_{\mathit{δx}\rightarrow0}\frac{\delta y}{\delta x}\) and the correspondence \(\frac{dy}{dx}=f'\left(x\right)\) where \(y=f(x)\)

ACMMM083 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum

Sort by Relevance | Title | Type |