Your search for "WA 0812 2782 5310 Biaya Rincian Mengecat Rumah Ukuran Tanah 10 X 15 Bambanglipuro Bantul" returned 110 result(s)
Sort by Relevance | Title | Type |

ACMSM118

establish and use the formula \(\int\frac1xdx=\ln{\;\vert x\;\vert}+c\) for x ≠ 0

ACMSM118 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum

ACMMM014

recognise features of the graphs of \(y=x^n\) for \(n\in\boldsymbol N,\) \(n=-1\) and \(n=½\), including shape, and behaviour as \(x\rightarrow\infty\) and \(x\rightarrow-\infty\)

ACMMM014 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM083

use the Leibniz notation for the derivative: \(\frac{dy}{dx}=\lim_{\mathit{δx}\rightarrow0}\frac{\delta y}{\delta x}\) and the correspondence \(\frac{dy}{dx}=f'\left(x\right)\) where \(y=f(x)\)

ACMMM083 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM124

examine the area problem, and use sums of the form \(\sum\nolimits_if\left(x_i\right)\;\delta x_i\) as area under the curve \(y=f(x)\)

ACMMM124 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM125

interpret the definite integral \(\int_a^bf\left(x\right)dx\;\) as area under the curve \(y=f\left(x\right)\) if \(f\left(x\right)>0\;\)

ACMMM125 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM126

recognise the definite integral \(\int_a^bf\left(x\right)dx\;\;\) as a limit of sums of the form \(\sum\nolimits_if\left(x_i\right)\;\delta x_i\)

ACMMM126 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMEM122

generate tables of values for linear functions, including for negative values of \(x\)

ACMEM122 | Content Descriptions | Unit 3 | Essential Mathematics | Mathematics | Senior secondary curriculum

ACMEM123

graph linear functions for all values of \(x\) with pencil and paper and with graphing software.

ACMEM123 | Content Descriptions | Unit 3 | Essential Mathematics | Mathematics | Senior secondary curriculum

ACMMM046

expand \(\left(x+y\right)^n\) for small positive integers \(n\)

ACMMM046 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM085

interpret the derivative as the slope or gradient of a tangent line of the graph of \(y=f(x)\)

ACMMM085 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM102

establish the formulas \(\frac d{dx}\left(\sin x\right)=\cos x,\;\text{ and }\frac d{dx}\left(\cos x\right)=-\sin x\) by numerical estimations of the limits and informal proofs based on geometric constructions

ACMMM102 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM117

establish and use the formula  \(\int e^xdx=e^x+c\)

ACMMM117 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM127

interpret \(\int_a^bf\left(x\right)dx\;\) as a sum of signed areas

ACMMM127 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM162

establish and use the formula \(\int\frac1xdx=\ln\;x\;+c\) for \(x>0\)

ACMMM162 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMSM067

define the imaginary number i as a root of the equation \(x^2=-1\)

ACMSM067 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum

ACMMM077

interpret the difference quotient \(\frac{f\left(x+h\right)-f(x)}h\) as the average rate of change of a function \(f\)

ACMMM077 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM081

examine the behaviour of the difference quotient \(\frac{f\left(x+h\right)-f(x)}h\) as \(h\rightarrow0\) as an informal introduction to the concept of a limit

ACMMM081 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMMM095

sketch curves associated with simple polynomials; find stationary points, and local and global maxima and minima; and examine behaviour as \(x\rightarrow\infty\) and \(x\rightarrow-\infty\)

ACMMM095 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum

ACMSM048

convert sums \(\mathrm a\cos\mathrm x+\mathrm b\;\sin\mathrm x\) to \(\mathrm R\;\cos{(\mathrm x\pm\mathrm\alpha)}\) or \(\mathrm R\sin{(\mathrm x\pm\mathrm\alpha)}\) and apply these to sketch graphs, solve equations of the form \(\mathrm a\cos\mathrm …

ACMSM048 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum

ACMMM020

recognise features of the graphs of \(x^2+y^2=r^2\) and \(\left(x-a\right)^2+\left(y-b\right)^2=r^2\), including their circular shapes, their centres and their radii

ACMMM020 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum

Sort by Relevance | Title | Type |