ACMEM123
graph linear functions for all values of \(x\) with pencil and paper and with graphing software.
ACMEM123 | Content Descriptions | Unit 3 | Essential Mathematics | Mathematics | Senior secondary curriculum
ACMMM046
expand \(\left(x+y\right)^n\) for small positive integers \(n\)
ACMMM046 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM085
interpret the derivative as the slope or gradient of a tangent line of the graph of \(y=f(x)\)
ACMMM085 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM102
establish the formulas \(\frac d{dx}\left(\sin x\right)=\cos x,\;\text{ and }\frac d{dx}\left(\cos x\right)=-\sin x\) by numerical estimations of the limits and informal proofs based on geometric constructions
ACMMM102 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM117
establish and use the formula \(\int e^xdx=e^x+c\)
ACMMM117 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM127
interpret \(\int_a^bf\left(x\right)dx\;\) as a sum of signed areas
ACMMM127 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM162
establish and use the formula \(\int\frac1xdx=\ln\;x\;+c\) for \(x>0\)
ACMMM162 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM067
define the imaginary number i as a root of the equation \(x^2=-1\)
ACMSM067 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMMM077
interpret the difference quotient \(\frac{f\left(x+h\right)-f(x)}h\) as the average rate of change of a function \(f\)
ACMMM077 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM081
examine the behaviour of the difference quotient \(\frac{f\left(x+h\right)-f(x)}h\) as \(h\rightarrow0\) as an informal introduction to the concept of a limit
ACMMM081 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM095
sketch curves associated with simple polynomials; find stationary points, and local and global maxima and minima; and examine behaviour as \(x\rightarrow\infty\) and \(x\rightarrow-\infty\)
ACMMM095 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM048
convert sums \(\mathrm a\cos\mathrm x+\mathrm b\;\sin\mathrm x\) to \(\mathrm R\;\cos{(\mathrm x\pm\mathrm\alpha)}\) or \(\mathrm R\sin{(\mathrm x\pm\mathrm\alpha)}\) and apply these to sketch graphs, solve equations of the form \(\mathrm a\cos\mathrm …
ACMSM048 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMMM020
recognise features of the graphs of \(x^2+y^2=r^2\) and \(\left(x-a\right)^2+\left(y-b\right)^2=r^2\), including their circular shapes, their centres and their radii
ACMMM020 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM107
use the increments formula: \(\delta y\cong\frac{dy}{dx}\times\delta x\) to estimate the change in the dependent variable \(y\) resulting from changes in the independent variable \(x\)
ACMMM107 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM130
understand and use the theorem \(F'\left(x\right)=\frac d{dx}\left(\int_a^xf\left(t\right)dt\right)=f\left(x\right)\), and illustrate its proof geometrically
ACMMM130 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM049
prove and apply other trigonometric identities such as \(\cos3\mathrm x=4\;\mathrm c\mathrm o\mathrm s^{3\;}\mathrm x-3\cos\mathrm x\)
ACMSM049 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM137
examine the concept of the sample mean X as a random variable whose value varies between samples where X is a random variable with mean μ and the standard deviation σ
ACMSM137 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACSCH021
Isotopes are atoms of an element with the same number of protons but different numbers of neutrons; different isotopes of elements are represented using atomic symbols (for example, \({}_6^{12}C\), \({}_6^{13}C\)
ACSCH021 | Content Descriptions | Unit 1 | Chemistry | Science | Senior secondary curriculum
ACSCH024
The relative atomic mass of an element is the ratio of the weighted average mass per atom of the naturally occurring form of the element to \(\frac1{12}\) the mass of an atom of carbon-12; relative atomic masses reflect the isotopic composition of the …
ACSCH024 | Content Descriptions | Unit 1 | Chemistry | Science | Senior secondary curriculum
ACMMM013
recognise features of the graphs of \(y=\frac1x\) and \(y=\frac a{x-b}\), including their hyperbolic shapes, and their asymptotes.
ACMMM013 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum