ACMMM078
use the Leibniz notation \(\delta x\) and \(\delta y\) for changes or increments in the variables \(x\) and \(y\)
ACMMM078 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM100
establish and use the formula \(\frac d{dx}\left(e^x\right)=e^x\)
ACMMM100 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM116
establish and use the formula \(\int x^ndx=\frac1{n+1}x^{n+1}+c\) for \(n\neq-1\)
ACMMM116 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM118
establish and use the formulas, \(\int\sin xdx=-\cos x+c\) and \(\int\cos xdx=\sin x+c\)
ACMMM118 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM122
determine \(f\left(x\right),\) given \(f^{'\;}(x)\;\) and an initial condition \(f\left(a\right)=b\)
ACMMM122 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM151
define logarithms as indices: \(a^x=b\) is equivalent to \(x=\log_ab\) i.e. \(a^{\log_ab}=b\)
ACMMM151 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM153
recognise the inverse relationship between logarithms and exponentials: \(y=a^x\) is equivalent to \(x=\log_ay\)
ACMMM153 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM160
recognise and use the inverse relationship of the functions \(y=e^x\) and \(y=\ln x\)
ACMMM160 | Content Descriptions | Unit 4 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMSM118
establish and use the formula \(\int\frac1xdx=\ln{\;\vert x\;\vert}+c\) for x ≠ 0
ACMSM118 | Content Descriptions | Unit 4 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMMM014
recognise features of the graphs of \(y=x^n\) for \(n\in\boldsymbol N,\) \(n=-1\) and \(n=½\), including shape, and behaviour as \(x\rightarrow\infty\) and \(x\rightarrow-\infty\)
ACMMM014 | Content Descriptions | Unit 1 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM083
use the Leibniz notation for the derivative: \(\frac{dy}{dx}=\lim_{\mathit{δx}\rightarrow0}\frac{\delta y}{\delta x}\) and the correspondence \(\frac{dy}{dx}=f'\left(x\right)\) where \(y=f(x)\)
ACMMM083 | Content Descriptions | Unit 2 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM124
examine the area problem, and use sums of the form \(\sum\nolimits_if\left(x_i\right)\;\delta x_i\) as area under the curve \(y=f(x)\)
ACMMM124 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM125
interpret the definite integral \(\int_a^bf\left(x\right)dx\;\) as area under the curve \(y=f\left(x\right)\) if \(f\left(x\right)>0\;\)
ACMMM125 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
ACMMM126
recognise the definite integral \(\int_a^bf\left(x\right)dx\;\;\) as a limit of sums of the form \(\sum\nolimits_if\left(x_i\right)\;\delta x_i\)
ACMMM126 | Content Descriptions | Unit 3 | Mathematical Methods | Mathematics | Senior secondary curriculum
Structure of Geography Geography
Units In Senior Secondary Geography, students develop their understanding about themes of immediate relevance to them and which have scope for application at a variety of scales, from the local to the global. There are four units: Unit 1: Natural and …
Structure of Geography | Geography | Humanities and Social Sciences | Senior secondary curriculum
Structure of Biology Biology
Units Biology is the study of the fascinating diversity of life as it has evolved and as it interacts and functions. Investigation of biological systems and their interactions, from cellular processes to ecosystem dynamics, has led to biological knowledge …
Structure of Biology | Biology | Science | Senior secondary curriculum
Structure of Chemistry Chemistry
Units In Chemistry, students develop their understanding of chemical systems, and how models of matter and energy transfers and transformations can be used to describe, explain and predict chemical structures, properties and reactions. There are four …
Structure of Chemistry | Chemistry | Science | Senior secondary curriculum
Structure of Earth and Environmental Science Earth and Environmental Science
Units In Earth and Environmental Science, students develop their understanding of the ways in which interactions between Earth systems influence Earth processes, environments and resources. There are four units: Unit 1: Introduction to Earth systems Unit …
Structure of Earth and Environmental Science | Earth and Environmental Science | Science | Senior secondary curriculum
Structure of Physics Physics
Units In Physics, students develop their understanding of the core concepts, models and theories that describe, explain and predict physical phenomena. There are four units: Unit 1: Thermal, nuclear and electrical physics Unit 2: Linear motion and waves Unit …
Structure of Physics | Physics | Science | Senior secondary curriculum
ACMEM122
generate tables of values for linear functions, including for negative values of \(x\)
ACMEM122 | Content Descriptions | Unit 3 | Essential Mathematics | Mathematics | Senior secondary curriculum