Unit 2 Specialist Mathematics
Unit 2 of Specialist Mathematics contains three topics – ‘Trigonometry’, ‘Real and complex numbers’ and ‘Matrices’… ‘Trigonometry’ contains techniques that are used in other topics in both this unit and Unit 3. ‘Real and complex numbers’ provides a continuation …
Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM067
define the imaginary number i as a root of the equation \(x^2=-1\)
ACMSM067 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM063
prove irrationality by contradiction for numbers such as \(\sqrt[{}]2\) and \(\log_25\)
ACMSM063 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM070
perform complex-number arithmetic: addition, subtraction, multiplication and division.
ACMSM070 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM066
prove divisibility results, such as \(3^{2n+4}-2^{2n}\) is divisible by 5 for any positive integer n.
ACMSM066 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM065
prove results for sums, such as \(1+4+9\dots+n^2=\frac{n(n+1)(2n+1)}6\) for any positive integer n
ACMSM065 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum
ACMSM055
define and use basic linear transformations: dilations of the form \((\mathrm x,\mathrm y)\longrightarrow({\mathrm\lambda}_1\mathrm x,{\mathrm\lambda}_2\mathrm y)\) , rotations about the origin and reflection in a line which passes through the origin, …
ACMSM055 | Content Descriptions | Unit 2 | Specialist Mathematics | Mathematics | Senior secondary curriculum